Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculiafoetida.
نویسندگان
چکیده
Fatty acids containing three-member carbocyclic rings are found in bacteria and plants. Bacteria synthesize cyclopropane fatty acids (CPA-FAs) only by the addition of a methylene group from S-adenosylmethionine to the cis-double bond of monoenoic phospholipid-bound fatty acids. In plants CPA-FAs are usually minor components with cyclopropene fatty acids (CPE-FAs) more abundant. Sterculia foetida seed oil contains 65-78% CPE-FAs, principally sterculic acid. To address carbocyclic fatty acid synthesis in plants, a cDNA library was constructed from developing seeds during the period of maximum oil deposition. About 0.4% of 5,300 expressed sequence tags were derived from one gene, which shared similarities to the bacterial CPA-FA synthase. However, the predicted protein is twice as large as the bacterial homolog and represents a fusion of an FAD-containing oxidase at the N terminus and a methyltransferase at the C terminus. Functional analysis of the isolated full-length cDNA was conducted in tobacco suspension cells where its expression resulted in the accumulation of up to 6.2% dihydrosterculate of total fatty acids. In addition, the dihydrosterculate was specifically labeled by [methyl-(14)C]methionine and by [(14)C]oleic acid in the transgenic tobacco cells. In in vitro assay of S. foetida seed extracts, S-adenosylmethionine served as a methylene donor for the synthesis of dihydrosterculate from oleate. Dihydrosterculate accumulated largely in phosphatidylcholine in both systems. Together, a CPA-FA synthase was identified from S. foetida, and the pathway in higher plants that produce carbocyclic fatty acids was defined as by transfer of C(1) units, most likely from S-adenosylmethionine to oleate.
منابع مشابه
Transformation of Rapeseed (Brassica napus L.) Plants with Sense and Antisense Constructs of the Fatty Acid Elongase Gene
The biosynthetic pathways of saturated and unsaturated fatty acids consist of many steps controlled by various enzymes. One of the methods for improving oil quality is to change the fatty acid profile through genetic manipulation which requires isolation and characterization of the genes and other cis-acting elements, such as the promoter, involved in fatty acid biosynthesis. b-ketoacyl-CoA syn...
متن کاملCyclopropane Fatty Acid Derivatives: Biosynthesis, Function and Total Synthesis
INTRODUCTION Cyclopropane-containing natural products are very unique owing to their unusual bonding and inherent ring strain (27.5 kcal/mol). 1 This strained ring has been found in naturally occurring terpenes, steroids, amino acids, fatty acids, alkaloids, and nucleic acids. For example, chrysanthemic acid derivatives, produced in plants via isoprenoid pathway are precursors to potent insecti...
متن کاملComparison of Epicardial Adipose Tissue Fatty Acid Profile in Cardiovascular Disease Patients Diabetic and Non-Diabetic
ABSTRACT Background and Objective: The relationship between diabetes mellitus and increased risk of cardiovascular diseases has been demonstrated. The aim of this study was to determine the fatty acid profile of epicardial adipose tissue in diabetic and non-diabetic patients with cardiovascular disease. &nb...
متن کاملEffects of penconazole on hormonal crosstalk and fatty acids from salt-stressed safflower
Salinity of soil is a major abiotic stress limiting the crop production and growth of safflower. To mitigate stress, the effects of penconazole (PEN) on the growth of safflower were studied to understand the underlying mechanisms of salt tolerance. PEN, a triazole derivative, which has both fungicidal and plant growth regulator properties, protects plants from several types of abiotic stresses....
متن کاملEvaluation of Genetic Variation and Parameters of Fatty Acid Profile in Doubled Haploid Lines of Camelina sativa L.
After cereals, oilseeds are the second-largest food reserves in the world. According to available statistics, more than 95 percent of Iran's oil needs are imported. Given the growing need for edible oils in Iran, it is important to identify fatty acids in the oilseed crops. Camelina sativa L. is an oil-medicinal plant and belongs to the Brassicaceae family that requires very little water and fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 10 شماره
صفحات -
تاریخ انتشار 2002